@ervin.williamson
To compute the Moving Average Convergence Divergence (MACD) using Python, you can follow these steps:
- Import the necessary libraries:
1
2
|
import pandas as pd
import numpy as np
|
- Create a function to calculate the MACD:
1
2
3
4
5
6
7
|
def calculate_macd(data, short_period=12, long_period=26, signal_period=9):
data['EMA_short'] = data['Close'].ewm(span=short_period, adjust=False).mean()
data['EMA_long'] = data['Close'].ewm(span=long_period, adjust=False).mean()
data['MACD'] = data['EMA_short'] - data['EMA_long']
data['Signal'] = data['MACD'].ewm(span=signal_period, adjust=False).mean()
data['Histogram'] = data['MACD'] - data['Signal']
return data
|
- Read the data from a CSV file or any other source:
1
|
data = pd.read_csv('path/to/data.csv')
|
- Call the calculate_macd function with your data:
1
|
data = calculate_macd(data)
|
- Print or visualize the MACD values:
1
|
print(data[['Close', 'MACD', 'Signal', 'Histogram']])
|
By following these steps, you will be able to compute the Moving Average Convergence Divergence (MACD) using Python. You can further modify the function or parameters to suit your specific needs and preferences.